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Data-Intensive Computing
in Widely Distributed Environments

The overall goal of this work is to provide methodology and tools to
permit the scientific community to routinely deal with massive
volumes of data at high data rates with complete location and
access transparency.
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Challenge

Identify what must be done to produce

• predictable, high-speed, components

• that will compose to yield high-performance widely
distributed applications .....
rather than having to “tune” these systems from top-to-bottom
as we mostly have to do now

Increasingly, we believe that meeting this challenge will involve

• comprehensive and adaptable monitoring that drives
adaptation of the system components, and

• automated remote management
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Issues and Approaches

♦ Scalability - the system must grow and shrink “gracefully”

• dynamic configuration

♦ Performance

• system-level parallelism and pipelining
• individual threads of control for every server-level resource
• monitoring

♦ Reliability - otherwise the system is not real

• autonomous monitoring and management ( + configurability
and adaptability)

♦ Security - otherwise the system is not real

• certificate based distributed management of policy
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An Overall Model for Data-Intensive Computing

♦ Each data source deposits its data in a distributed cache, and
each data consumer takes data from the cache, usually writing
processed data back to the cache

♦ A standard interface to a large, high-speed,
application-oriented cache

♦ In almost every case there is also a tertiary storage system
manager that migrates data to and from the cache

♦ Depending on the size of the cache relative to the objects of
interest, the storage system manager may move objects to the
cache over some relatively long period of time; that is, the cache
can serve as a moving window on the object/dataset.



 6

[SC97.VG.fm - April 23, 1999]

Model

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

♦ The cache - application interface is at the logical block level,
but client-side libraries implement various access semantics
(including C I/O):

• upon request available data is returned,

• requests for data in the dataset, but not yet migrated to cache,
causes the application-level read to block.

Generally, the cache is large compared to the available disks of the
computing environment, and very large compared to any single
disk (e.g. hundreds of gigabytes).
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Example: Prototype Architecture for HENP
Distributed Analysis

♦ High Energy and Nuclear physics accelerator detectors are the
prototypical high data-rate scientific instrument

♦ The WALDO system provides another example, in which a
digital library is inserted in the architecture
(see http://www-itg.lbl.gov/WALDO)
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♦ The model for analysis is an off-line event archive feeding a
high-speed cache, with remote analysts using a combination of
local and remote distributed resources (figure 3.).
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The Distributed Cache Architecture

The Distributed-Parallel Storage System (DPSS) is a high-speed,
application-oriented network data cache that is itself a widely
distributed system, and that serves several roles in
high-performance, data-intensive computing environments.

Functionally, the DPSS provides:

♦ A standard interface for high-speed data access with the
functionality of a single, very large, random access, block
oriented I/O device (i.e. a “virtual disk”);

♦ High capacity, on-line cache storage (we anticipate a terabyte
size for the STAR analysis environment) that serves to isolate
the application from the tertiary storage system and the
instrument (detector data acquisition system);
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♦ Access to many large datasets that may be logically present in
the cache by virtue of the block index maps being loaded, even
if the data is not yet available (in this way processing can begin
as soon as the first data has been migrated from tertiary
storage);

♦ Application-specific interfaces to an extremely large space (16
byte indices) of logical blocks;

♦ The ability to dynamically configure on-line systems by
aggregating workstations and disks from all over the network
(this is routinely done in the MAGIC testbed);

♦ The ability to build large, high-performance storage systems
from the least expensive commodity components;

♦ Scalable performance by increasing the number of parallel
operating DPSS servers.



 14

[SC97.VG.fm - April 23, 1999]

Cache Architecture

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

♦ DPSS uses parallel operation of distributed servers to supply,
for example, image streams fast enough to enable various
multi-user, “real-time”, virtual reality-like applications in an
Internet / ATM environment.

♦ Ultimately, the ene-to-end performance comes from using
separate threads of control for every resource

♦ As illustrated in figure 5. the DPSS provides a “logical block”
server that does “third party” transfers from disk servers
directly to application client buffers;

♦ The DPSS, as a system, is designed to be distributed across a
wide-area network;

♦ The components are actively managed by a collection of
independently communicating agents to provide highly
distributed, reliable, wide-area operation;
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♦ Data placement occurs during the data-write operation
(figure 8.)

♦ Three major architectural components: storage and control,
security, agent-based management (figure 7.)
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Performance Monitoring and Analysis

There arevirtually no behavioral aspects of widely distributed
applicationsthat canbetaken for granted - they are fundamentally
different from LAN based distributed applications.
♦ A hard problem that is a barrier to the routine construction of

high-speed distributed applications
♦ Hard, because techniques that work in the LAN frequently do

not work in the wide area
To characterize the wide area environment we have developed a
methodology for detailed,end-to-end, top-to-bottom monitoringand
analysis of every significant event involved in distributed systems
data interchange.
♦ Has proven invaluable for isolating and correcting

performance bottlenecks, and even for debugging distributed
parallel code
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♦ The monitoring methodology involves precision time
correlation of events throughout the distributed system,
together with analysis techniques for obtaining information
from the reconstructed dataflow lifelines.
• NetLogger/LogTracer toolscollectstateinformation and time

stamps at all critical points in the data path, including
instrumenting the clients and applications

• timing and event information is carried as a defined part of
the data block structure OR is logged and correlated based on
the timestamps

• NTP is used to synchronize system clocks to withinabout 250
microseconds of each other (but the systems have to stay up
for a significant length of time for the clocks to converge to
250µs)

♦ The results are detailed, data block transit history “life-lines”
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♦ Analysis of the event life-lines
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Results of the MAGIC WAN experiment

♦ Three disk server configuration (next figure) DPSS

♦ Things to notice:

• Many TCP retransmissions, and some very long delays (up to
5500 ms!) (Once a block is written to the TCP socket, the user
level flushes have no effect, and TCP will re-send the block
until transmission is successful, even though the data is likely
no longer needed and is holding up newer data).

• These long delays are almost always accompanied by one or
more TCP retransmit events.
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The MAGIC Network and DPSS / Application Performance Test Configuration
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Experiment to testTCP window vs.MTU hypothesis:ReduceMTU
size

♦ Reduce the network MTU to a very small value (e.g. 1024
bytes) so that the TCP window can close to values more
consistent with the available switch buffering

• indeed, this helps a lot (see next figure)
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Experiment to test switch cell dropping hypothesis: Cell pacing

These experiments caused all of the MAGIC backbone switches to
be replaced and/or upgraded with large output buffers.
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Application Performance Monitoring Example

The STAR analysis framework (STAF) is being used to provide a
realistic application environment in which to validate and refine
the data handling architecture and implementation.

Generally speaking, STAF manages self-describing data structures
on behalf of analysis modules. Data is requested through a
standard interface that supports several communications models,
including the DPSS cache. The data is converted to
machine-specific format and placed into memory data structures,
whence it is accessed by the analysis modules.
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♦ A typical DPSS server consists of a commodity workstation
(e.g. a 200 MHz Pentium) with one high speed network
interface (100 Mb/s Ethernet or 155 Mb/s ATM), three or more
SCSI adaptors, and three or more disks on each SCSI string.

♦ Each such server can independently deliver about 10
Mbytes/sec of data to a remote application which sees the
aggregated streams for all servers in a DPSS system.

♦ Performance in an HENP-like configuration for multiple,
parallel applications was measured using a two disk server, four
disk, DPSS configuration. Data requests are made by a STAF
based reader through the DPSS file semantics interface which
collects blocks from the DPSS servers, buffers them, and
provides serial access to the buffer through an API.
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The throughput rates are measured as data is delivered to the
application level (analysis modules),
a path that includes translating the data to the appropriate
machine format and structuring it in memory (both of which are
very fast operations), which provides the most realistic
performance measurement.

• data was read in 1 Mbyte units (size of a STAR event) and a
total of 1 Gbyte was read

• STAF was run on a Sun E-4000 system with an OC-12 (622
Mbit/s) ATM interface

• a two server, four disk DPSS configuration was used as the
cache
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• a data rate of 19 Mbytes/s is achieved for reading data (as
expected for two disk servers), and 25 MBytes/s for writing
data.

♦ Running 10 instances of the application simultaneously results
in the same aggregate throughput with very uniform access,
indicating good scalability.
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Agent Based Management of Widely Distributed
Systems

If comprehensive monitoring is the key to diagnosis (as illustrated
below), agent based management may be the key to keeping widely
distributed systems running reliably.

♦ “Agents” are
• autonomous
• adaptable
• monitors
• managers
• information aggregates
• KQML based information filters
• implemented in Java
• constantly communicating with peers
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Initial use of agents

♦ Provide structured access to current andhistorical information
regarding the state of the DPSS components

♦ Keep track of all components within the system andrestart any
component that has crashed, including one of the other agents
(addresses fault tolerance)

♦ When new components are added, such as a new disk server,
the agents do not have to be reconfigured - an agent is started
on the new host, and it will inform all other agents about itself
and the new server

- Brokers and agents may discover interesting new agents via
SDR,whence the new agent -and resource that it
represents- is added to the configuration. (“Associated”
agents communicate with each other using IP multicast.)
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♦ Broker agentsmanage information from a collection ofmonitor
agents (usually on behalf of a user client)
• Data set state management:

- agents manage dataset metadata (dynamic state, alternate
locations tertiary location) at each storage system

+ brokers provide an integrated view of the data

• For dynamic configuration and application adaptation
- agents continuously monitor state of all network interfaces

and data paths
+ brokers analyze this information on behalf of a client to

determine which DPSS has the best network
connectivity

- agents monitor the load of each DPSS disk server
+ broker can analyze to decide which servers to use when

data is replicated (addresses high availability)



 43

[SC97.VG.fm - April 23, 1999]

Agent Based Management

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

♦ Brokers can perform actions on behalf of a user
• e.g., if a data set is not currently loaded onto a DPSS (which is

typically used as a cache), the broker can cause the dataset to
be loaded from tertiary storage

♦ A broker/agent architecture allows the system administrators
to separate mechanism from policy
• agent rule-based operation can be used to determine what

policies are be enforced while remaining separate from the
actual mechanism used to implement these policies
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♦ New agent methods can be added at any time
• e.g., the brokers have an algorithm for determining which

DPSS configuration to use based on a set of parameters that
include network bandwidth, latency and disk server load - this
algorithm can be modified “on the fly” by loading new
methods into the agents

• related agents are part of the same security context, and new
code/methods presented to the agents is cryptographically
signed for origin verification and integrity

First demonstration / experiment

In MAGIC, an application will use aggregated information from a
broker to present an adaptive and dynamic view of the system:
data throughput, server state, and dataset metadata as reported by
the agents (versus a directory approach)
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Future

♦ When you observe that something has gone wrong in a widely
distributed system, it is generally too late to react - in fact, you
frequently can’t even tell what is wrong, because
• it depends on a history of events
• you can’t get at the needed information any more
• it will take too long to ask and answer all of the required

questions

Agents will not only monitor, but keep a state history in order to
answer the question “how did we get here?”

♦ Active analysis of operational patterns (e.g. pattern analysis of
data block lifeline traces) will lead to adapting behavior /
configuration to avoid or correct problems
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Security

The overall model for security is that a collection of
cryptographically signed are maintained by the responsible party /
stakeholder:

• authorization (owner / stakeholder use-conditions)
• attributes (user characteristics)
• identity (of principals - entities and components)

represents the access policy in terms of use conditions and
corresponding user attributes.

Upon an access request, a policy engine collects and evaluates the
certificates and returns a yes/no answer. An affirmative answer
initiates the context establishment phase of the underlying security
mechanism (e.g. SSH or GSS)
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Security Model for Widely Distributed Systems
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An Experiment in High-Speed, Wide Area
Distributed Data Handling

At the data generation end of a physics experiment like those at RHIC, a detector puts out
a steady state data stream of 20-40 Mbytes/s. Traditionally, this data is archived and a
first level of processing is performed at the experiment site. The resulting second level
data is also archived and requested later for the analysis described above. This results in
the data being archived at the experiment site in “medium” sized tertiary storage systems.

It is our contention that in the time frame of the next generation of physics experiments
(2000-2005 AD) that wide area networks will be easily capable of distributing the
instrument output data stream anywhere in the US (and probably to Europe).

There are two advantages to this scenario. First, the first level processing (which is easily
parallelized) can be done using resources at the collaborators sites (each experiment
typically involves 5-10 major institutions). Second, large tertiary storage systems exhibit
substantial economies of scale, and so using a large tertiary storage system at, say, a
supercomputer center, should result in more economical storage, better access (because
of much larger near-line systems - e.g. lots of tape robots) and better media management,
especially in the long term, than can be obtained in local systems.

To this end, we propose that the data handling architecture developed for the real-time
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digital cataloguing system noted above (Figure 2) can be used for this purpose.

For the first level data from the instrument system, the data flows from the instrument,
through the network, to a receiving cache. (See figure 14) The DPSS is used for this cache,
the servers of which may be located at one, or (as in the MAGIC testbed) distributed
across many sites. The first level of processing can be done directly out of the cache. The
first level data is also moved from cache to tertiary storage, and the results of this
processing can be used to optimize data placement on tertiary storage.

This scenario is being tested in the following experiment. A DPSS and a computing cluster
are located at Lawrence Berkeley National Laboratory. The NTON network testbed that
connects Berkeley and LLNL can be configured for a 2000 km, OC-12, path. A high-speed
workstation that has a collection of STAR events stored on its disks is located at LLNL
and connected to NTON. This workstation will emit events at the same rate as the STAR
detector, and this data will be cached on the DPSS at Berkeley. The computing cluster will
process data out of the cache (doing “reconstruction”) and those results will be written
back to the cache. A storage manager will migrate data to tertiary storage (or a “null”
system that has the same throughput characteristics, as there is little point in actually
storing this synthetic data).

Except that the computing cluster will not have sufficient compute capacity to do all of
the required processing at the operating data rates, this scenario - once it works as
expected - should demonstrate the feasibility of wide area processing of this type of
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real-time data. The experiment is illustrated in figure 15.
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The Wide Area, Large Data Object System

♦ WALDO was the first system in which we used the DPSS for
high-speed data collection and on-line distributed processing of
that data.

This general model has been used in several data-intensive
computing applications. For example, a real-time digital library
system (see figure 2 and [DIGLIB]) collects data from a remote
medical imaging system, and automatically processes,
catalogues, and archives each data unit together with the
derived data and metadata, with the result being a Web-based
object representing each dataset. This automatic system
operates 10 hours/day, 5-6 days/week with data rates of about 30
Mbits/sec during the data collection phase (about 20
minutes/hour).



 55

[SC97.VG.fm - April 23, 1999]

WALDO

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

Application
• cache-based or

Web-based
access to LDO
components

LDO
“object”

description

consumerproducer
(capture, catalogue)

Web browser
• data-user

interface
• curator interface

Processing
• generate:
- object template
- metadata
- derived

representations
• manage initial

archival storage

search engine

m
et

ad
at

a
DPSS

• high speed
data cache for
incoming data

Web server
• LDO access

methods
• search engine

management
• cache/MSS

management
• some LDO

data-component

Data
Source

• collection
• buffering
• network

transport

DPSS
• cache for high

speed
application
access to data

MSS
• tertiary storage

archiving of
large-data-component

local storage
• WALDO Web

server based
LDO
component
storage

access   control

public-key
infrastructure
use-condition

certificates

object mg’mt
(persistence, metadata mg’mt,

storage mg’mt)

2. WALDO Data Flow for Automatic Digital Library Generation



 56

[SC97.VG.fm - April 23, 1999]

WALDO

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

Kaiser San Francisco Hospital
Cardiac Catheterization Lab

NTON

MAGIC

LBNL
WALDO and

DPSS

Kaiser
Division

of
Research

Kaiser
Oakland
Hospital

3. Kaiser / LBNL Health Care Imaging System and NTON Testbed



 57

[SC97.VG.fm - April 23, 1999]

WALDO

Imaging and Distributed Computing Group,
Information and Computing Sciences Division

4. A representation of the six objects (about 0.75 GBy total) resulting from a single cycle of operation of a remote,
on-line cardio-angiography system
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Conclusions
The experiments described here are work-in-progress. The use of the DPSS as cache has
demonstrated the required performance, but a complete demonstration of scalability
requires running hundreds of analysis processes. The wide area, high-data rate
experiment configuration is nearly complete, and results are expected in the near future.
We expect that this experiment will be successful, because several precursors have been
carried out in the MAGIC testbed. However, experience has also shown that every
significant increase in throughput and/or scale raises a new set of issues.
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Application Architecture (figure 4):

♦ An analysis management and user interface system generates
queries that produce a list of objects of interest. (1), (2)

♦ This list of objects, then, has to be retrieved from tertiary
storage (3), and loaded into the cache for processing (6). The
cache loading process involves parallel transfers from the
tertiary storage system to the cache.

♦ A data mover (4) reads data from the tertiary storage system
and reorganizes it for placement on the cache.

♦ An “in-line” filter that uses a specialized version of the analysis
code may refine the query results. (5)
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♦ When a dataset (or part of a dataset) has been loaded into the
cache, the object manager is notified, and it in turn notifies the
analysis code.

♦ Multiple instances of the analysis code (operating under the
control of a analysis manager) running simultaneously on many
different systems then read data from the cache into memory,
and processing commences. (7)

♦ In the prototype architecture the analysis systems may be
widely distributed, and they all consume data from the cache,
and return results to the cache.

♦ Two approaches to managing data within the analysis code are
illustrated: STAF, which manipulates self-describing tables,
and an object-oriented database, which manages C++ objects.
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